FALL-1
- ENG 101 (3) 1st-Year Comp.
- BIO 181 or 182 or CHM 113 or 114 (4)
- ASU 101-CAI (1) ASU Experience.
- FSE 100 (2) Intro to Eng.
- MAT 265 (3) CALC I
- CSE 110 (3) Principles of Programming
- Java
- HU or SB (3) 15 HOURS

SPRING-2
- ENG 102 (3) 1st-Year Comp.
- ENG 105 or 107 (2)
- MAT 266 (3) CALC II
- CSE 205 (3) Object-Oriented Programming
- PHY 121 (3) University Physics
- PHY 122 (1) University Physics II
- MAT 243 (3) Discrete Math
- CSE 120 (3) Digital Design
- HU or SB & Awareness Area (3) 16 HOURS

FALL-3
- PHY 131 (3) and 122 (1) University Physics
- MAT 267 (3) CALC III
- PHY 132 (1) University Physics
- CSE 220 (3) Programming for Comp. Engr
- CSE 235 (3) Embedded Microprocessor Systems
- HU or SB & Awareness Area (3) 16 HOURS

SPRING-4
- EEE 202 (4) Circuits I
- IEE 380 (3) Prob. & Stats.
- MAT 275 (3) Diff. Equations
- CSE 301 (1) Computing Ethics
- CSE 302 (3) Design & Synthesis of Dig. Hardware
- MAT 343 (3) Applied Linear Algebra
- CSE 320 (3) Design of Experiments
- HU or SB & Awareness Area (3) 16 HOURS

FALL-5
- EEE 334 (4) Circuits II
- MAT 265 (3) CALC I
- CSE 310 (3) Data Structure & Algorithms
- CSE 315 (3) Design & Synthesis of Dig. Hardware
- CSE 325 (3) Embedded Microprocessor Systems
- MAT 343 (3) Applied Linear Algebra
- HU or SB & Awareness Area (3) 16 HOURS

SPRING-6
- +**CSE TE (3)
- +**CSE TE (3)
- +Cybersecurity Focus Area (3)
- +Cybersecurity Focus Area (3)
- CSE 423 (3) Capstone I (L)
- CSE 434 (3)
- CSE 424 (3)
- CSE 420 (3) Computer Architecture
- HU or SB (3) 12 HOURS

FALL-7
- +**CSE TE (3)
- +Cybersecurity Focus Area (3)
- CSE 423 (3) Capstone II (L)
- CSE 424 (3)
- CSE 420 (3) Computer Architecture
- HU or SB (3) 12 HOURS

SPRING-8
- Upper Division HU/SB (3)
- +CSE 330 (3) Operating Systems
- HU or SB (3) 15 HOURS

Notes:
- International students may take ENG 107 and ENG 108. Students placing in to ENG 105 will replace ENG 101 with a recommended course.
- ** See SCAI Advising Center or SCAI Website (https://scai.engineering.asu.edu/computer-systems-engineering/degree-requirements-computer-systems-engineering/) for degree requirements and a list of technical electives.
- + All upper-division CSE courses (including CSE 4XX and Tech Elective) require additional prerequisites. Please check the catalog for specific information.
- # All pre-requisite coursework must be completed prior to taking CSE 423 (CSE 301; CSE 320; CSE 325; CSE 330; CSE 360; ENG 101, 105, or 107)

Shaded courses designate “Critical Requirements” and must be completed as described above to remain on-track. Off-track twice students will be required to change their major.
Minimum “C” grade is required in all major courses (see major map for details)
All ASU students must complete required general studies including, 2 lower division HU, 2 lower division SB, one upper division HU or SB and 1 class from each of the 3 Awareness Areas(AA)
Prerequisite ——> Co-requisite ———>
Term 1
FSE 100: Introduction to Engineering - Introduces the engineering design process; working in engineering teams; the profession of engineering; engineering models, written and oral technical communication skills.
MAT 265: Calculus for Engineers I - Limits and continuity, differential calculus of functions of one variable, introduction to integration. Not open to students with credit in MAT 270.
ASU 101-CAL: The ASU Experience
ENG 101: First-Year Composition
HU/SB: Humanities, Fine Arts & Design or Social & Behavioral Sciences

Term 2
CSE 205: Object-Oriented Programming & Data Structures - Problem solving by programming with an object-oriented programming language. Introduces data structures. Overview of computer science topics.
MAT 266: Calculus for Engineers II - Methods of integration, applications of calculus, elements of analytic geometry, improper integrals, Taylor series
ENG 102: First-Year Composition
Lab Science Option: choose from BIO181 or 182 or CHM 113 or 114
HU/SB: Humanities, Fine Arts & Design or Social & Behavioral Sciences

Term 3
CSE 120: Digital Design Fundamentals - Number systems, conversion methods, binary and complement arithmetic, Boolean algebra, circuit minimization, ROMs, PLA's, flip-flops, synchronous sequential circuits.
MAT 243: Discrete Mathematical Structures - Logic, sets, functions, elementary number theory and combinatorics, recursive algorithms, and mathematical reasoning, including induction. Emphasizes connections to computer science.
MAT 267: Calculus for Engineers III - Vector-valued functions of several variables, partial derivatives, multiple integration.
PHY 121/122: University Physics I: Mechanics and laboratory - Kinematics; Newton's laws; work, energy, momentum, conservation laws; dynamics of particles, solids, and fluids. Both PHY 121 and PHY 122 must be taken to secure SQ General Studies credit.
HU/SB: Humanities, Fine Arts & Design or Social & Behavioral Sciences

Term 4
PHY 131/132: University Physics II: Electricity and Magnetism and laboratory - Electric charge and current, electric and magnetic fields in vacuum and in materials, and induction. AC circuits, displacement current, and electromagnetic waves. Both PHY 131 and PHY 132 must be taken to secure SQ General Studies credit.
MAT 275: Modern Differential Equations - Introduces differential equations, theoretical and practical solution techniques. Applications. Problem solving using MATLAB.
HU/SB: Humanities, Fine Arts & Design or Social & Behavioral Sciences

Term 5
EEE 202: Circuits I - Principles for analyzing linear and nonlinear circuits. Uses SPICE and MATLAB. Design and measurement of linear analog electrical systems.
CSE 301: Computing Ethics - Ethics for computing majors: history of computing, intellectual property, privacy, ethical frameworks, professional ethical responsibilities, and risks of computer-based systems.
CSE 310: Data Structures and Algorithms - Advanced data structures and algorithms, including stacks, queues, trees (B, B+, AVL), and graphs. Searching for graphs, hashing, external sorting.
CEE 320: Design and Synthesis of Digital Hardware - Design and synthesis of digital hardware with hardware description language, computer-aided design tools, and programmable devices.

Term 6
CSE 325: Embedded Microprocessor Systems - System-level programming and analysis of embedded microprocessors systems. Fundamental concepts of digital system design for embedded system applications.
CSE 330: Operating Systems - Operating system structure and services, processor scheduling, concurrent processes, synchronization techniques, memory management, virtual memory, input/output, storage management, and file systems.
CSE 360: Introduction to Software Engineering - Software life cycle models; project management; team development environments and methodologies; software architectures; quality assurance and standards; legal, ethical issues

Term 7
CSE 423: Systems Capstone Project I - Development process: specification, design, implementation, evaluation, and testing with economic, social, and safety considerations. Technical communication and team skills enrichment.
CSE 434: Computer Networks - Distributed computing paradigms and technologies, distributed system architectures and design patterns, frameworks for development of distributed software components.
CSE Technical Elective
CSE Technical Elective
HU/SB: Upper Division Humanities, Fine Arts & Design or Social & Behavioral Sciences

Term 8
CSE 424: Systems Capstone Project II - Continuation of capstone project started in CSE 423.
CSE Technical Elective
CSE Technical Elective