NOTICE OF COURSE UPDATES

The below course updates were enacted after the 2018-19 catalog was published.

The course updates apply to ALL students taking an updated course in or after the effective semester regardless of a student’s official catalog year.

The course updates may add necessary prerequisites which are not reflected in the flowchart ordering.

If you have any questions about the course updates and how they may impact your specific graduation plan please speak with your SCAI academic advisor.

<table>
<thead>
<tr>
<th>Course</th>
<th>Change</th>
<th>Effective Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE 466</td>
<td>CSE 365 Added to Prerequisites</td>
<td>Fall 2020</td>
</tr>
<tr>
<td>CSE 467</td>
<td>CSE 365 Added to Prerequisites</td>
<td>Fall 2020</td>
</tr>
<tr>
<td>CSE 485</td>
<td>CSE 301 Added to Prerequisites</td>
<td>Fall 2021</td>
</tr>
</tbody>
</table>

CONTINUE TO
COMPUTER SCIENCE (SOFTWARE ENGINEERING) FLOWCHART
Notes: ** See CIDSE Advising Center or CIDSE Website (http://cidse.engineering.asu.edu/degreerequirementsbscs/) for approved technical electives and approved lab science sequence courses.
† CSE 301 requires FSE 100 as an additional prerequisite
† CSE 340 requires CSE 230 as an additional prerequisite
‡ CSE 301 requires FSE 100 as an additional prerequisite
‡ CSE 340 requires CSE 230 as an additional prerequisite
+ CSE 4XX courses require CSE 310 and/or 360 as prerequisites
Shaded courses designate critical requirements. Minimum "C" grade required in all CSE major courses
Bolded courses are offered in specific terms only

FSE 100: Introduction to Engineering - Introduces the engineering design process; working in engineering teams; the profession of engineering; engineering models, written and oral technical communication skills.

MAT 265: Calculus for Engineers I - Limits and continuity, differential calculus of functions of one variable, introduction to integration. Not open to students with credit in MAT 267.

ASU 101-CSE: The ASU Experience

ENG 101: First-Year Composition

HU/SB: Humanities, Fine Arts & Design or Social & Behavioral Sciences

Term 2

CSE 205: Object-Oriented Programming & Data Structures - Problem solving by programming with an object-oriented programming language. Introduces data structures. Overview of computer science topics.

MAT 266: Calculus for Engineers II - Methods of integration, applications of calculus, elements of analytic geometry, improper integrals, Taylor series

ENG 102: First-Year Composition

Lab Science Option: choose from BIO 181, GLG 101 & 103, GLG 110 & 111, CHM 113 or 114, OR PHY 121 & 122

HU/SB: Humanities, Fine Arts & Design or Social & Behavioral Sciences

Term 3

CSE 120: Digital Design Fundamentals - Number systems, conversion methods, binary and complement arithmetic, Boolean algebra, circuit minimization, ROMs, PLAs, flipflops, synchronous sequential circuits

MAT 243: Discrete Mathematical Structures - Logic, sets, functions, elementary number theory and combinatorics, recursive algorithms, and mathematical reasoning, including induction. Emphasizes connections to computer science.

MAT 267: Calculus for Engineers III - Vector-valued functions of several variables, partial derivatives, multiple integration OR

CSE 259: Logic in Computer Science - This course is a mathematically solid introduction to propositional logic, first order logic, logic programming, and their applications in computer science.

Lab Science: PHY 121/122 & PHY 131/132 or CHM113 & 116 or GLG 101/103 & GLG 102/104 or BIO 181 & 182

HU/SB: Humanities, Fine Arts & Design or Social & Behavioral Sciences

Term 4

CSE 240: Introduction to Programming Languages - Introduces the procedural (C/C++), applicative (LISP/Scheme), and declarative (Prolog) languages.

Lab Science: complete sequence from above

HU/SB: Humanities, Fine Arts & Design or Social & Behavioral Sciences

Term 5

CSE 365: Information Assurance - Concepts of information assurance (IA); basic IA techniques, policies, risk management, administration, legal and ethics issues.

CSE 301: Computing Ethics - Ethics for computing majors: history of computing, intellectual property, privacy, ethical frameworks, professional ethical responsibilities, and risks of computer-based systems.

CSE 310: Data Structures and Algorithms - Advanced data structures and algorithms, including stacks, queues, trees (B, B+, AVL), and graphs. Searching for graphs, hashing, external sorting.

CSE 360: Introduction to Software Engineering - Software life cycle models; project management, team development environments and methodologies; software architectures; quality assurance and standards; legal, ethical issues

IEE 380: Probability and Statistics for Engineering Problem Solving - Applications-oriented course with computer-based experience using statistical software for formulating and solving engineering problems

General Elective

Term 6

CSE 330: Operating Systems - Operating system structure and services, processor scheduling, concurrent processes, synchronization techniques, memory management, virtual memory, input/output, storage management, and file systems.

CSE 340: Principles of Programming Languages - Formal syntactic and semantic descriptions, compilation and implementation issues, and theoretical foundations for several programming paradigms.

CSE 355: Introduction to Theoretical Computer Science - Introduces formal language theory and automata, Turing machines, decidability/undecidability, recursive function theory, and complexity theory.

CSE 445: Distributed Software Development - Distributed system architectures and design, service-oriented computing, and frameworks for development of distributed applications and software components.

HU/SB: Humanities, Fine Arts & Design or Social & Behavioral Sciences

Term 7

CSE 405: Computer Science Capstone Project I - First course in capstone sequence for computer science majors emphasizing development process, technical skills, teamwork, and communication.

CSE 464: Software Quality Assurance and Testing - Software quality assurance (SQA), software quality metrics, software configuration management, software verification and validation, reviews, inspections, understanding software testing process, functional testing, structural testing, model-based testing, integration, system, and regression testing techniques, software life cycle models and software testing, testing distributed software, bug management, and use of testing tools.

CSE 466: Software Analysis and Design - Object-oriented and structured analysis and design; software architecture and design patterns; component-based development; software safety and reliability.

Technical Elective - Upper Division Technical Elective from list on DARS/major map

General Elective (2 credit)

Term 8

CSE 486: Computer Science Capstone Project II - Second course in capstone sequence for computer science majors continuing the development process, technical skills, teamwork, and communication.

CSE 446: Information Assurance - Concepts of information assurance (IA); basic IA techniques, policies, risk management, administration, legal and ethics issues.

CSE 467: Computing Ethics - Ethics for computing majors: history of computing, intellectual property, privacy, ethical frameworks, professional ethical responsibilities, and risks of computer-based systems.

CSE 310: Data Structures and Algorithms - Advanced data structures and algorithms, including stacks, queues, trees (B, B+, AVL), and graphs. Searching for graphs, hashing, external sorting.

CSE 360: Introduction to Software Engineering - Software life cycle models; project management, team development environments and methodologies; software architectures; quality assurance and standards; legal, ethical issues

IEE 380: Probability and Statistics for Engineering Problem Solving - Applications-oriented course with computer-based experience using statistical software for formulating and solving engineering problems

General Elective

Term 6

CSE 330: Operating Systems - Operating system structure and services, processor scheduling, concurrent processes, synchronization techniques, memory management, virtual memory, input/output, storage management, and file systems.

CSE 340: Principles of Programming Languages - Formal syntactic and semantic descriptions, compilation and implementation issues, and theoretical foundations for several programming paradigms.

CSE 355: Introduction to Theoretical Computer Science - Introduces formal language theory and automata, Turing machines, decidability/undecidability, recursive function theory, and complexity theory.

CSE 445: Distributed Software Development - Distributed system architectures and design, service-oriented computing, and frameworks for development of distributed applications and software components.

HU/SB: Humanities, Fine Arts & Design or Social & Behavioral Sciences

Term 7

CSE 405: Computer Science Capstone Project I - First course in capstone sequence for computer science majors emphasizing development process, technical skills, teamwork, and communication.

CSE 464: Software Quality Assurance and Testing - Software quality assurance (SQA), software quality metrics, software configuration management, software verification and validation, reviews, inspections, understanding software testing process, functional testing, structural testing, model-based testing, integration, system, and regression testing techniques, software life cycle models and software testing, testing distributed software, bug management, and use of testing tools.

CSE 466: Software Analysis and Design - Object-oriented and structured analysis and design; software architecture and design patterns; component-based development; software safety and reliability.

Technical Elective - Upper Division Technical Elective from list on DARS/major map

General Elective (2 credit)

Term 8

CSE 486: Computer Science Capstone Project II - Second course in capstone sequence for computer science majors continuing the development process, technical skills, teamwork, and communication.