NOTICE OF COURSE UPDATES

The below course updates were enacted after the 2017-18 catalog was published.

The course updates apply to ALL students taking an updated course in or after the effective semester regardless of a student’s official catalog year.

The course updates may add necessary prerequisites which are not reflected in the flowchart ordering.

If you have any questions about the course updates and how they may impact your specific graduation plan please speak with your SCAI academic advisor.

<table>
<thead>
<tr>
<th>Course</th>
<th>Change</th>
<th>Effective Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE 466</td>
<td>CSE 365 Added to Prerequisites</td>
<td>Fall 2020</td>
</tr>
<tr>
<td>CSE 467</td>
<td>CSE 365 Added to Prerequisites</td>
<td>Fall 2020</td>
</tr>
<tr>
<td>CSE 485</td>
<td>CSE 301 Added to Prerequisites</td>
<td>Fall 2021</td>
</tr>
</tbody>
</table>

CONTINUE TO COMPUTER SCIENCE (SOFTWARE ENGINEERING) FLOWCHART
Term 1

FSE 100: Introduction to Engineering - Introduces the engineering design process; working in engineering teams; the profession of engineering; engineering models, written and oral technical communication skills.

MAT 265: Calculus for Engineers I - Limits and continuity, differential calculus of functions of one variable, introduction to integration. Not open to students with credit in MAT 270.

ASU 101-CSE: The ASU Experience

ENG 101: First-Year Composition

HU/SB: Humanities, Fine Arts & Design or Social & Behavioral Sciences

Term 2
CSE 205: Object-Oriented Programming & Data Structures - Problem solving by programming with an object-oriented programming language. Introduces data structures. Overview of computer science topics.

MAT 266: Calculus for Engineers II - Methods of integration, applications of calculus, elements of analytic geometry, improper integrals, Taylor series

ENG 102: First-Year Composition

Lab Science Option: choose from BIO, GLG, CHM or PHY (see full list below in Term 3)

General Elective

Term 3
CSE 120: Digital Design Fundamentals - Number systems, conversion methods, binary and complement arithmetic, Boolean algebra, circuit minimization, ROMs, PLAs, flipflops, synchronous sequential circuits

MAT 243: Discrete Mathematical Structures - Logic, sets, functions, elementary number theory and combinatorics, recursive algorithms, and mathematical reasoning, including induction. Emphasizes connections to computer science.

MAT 267: Calculus for Engineers III - Vector-valued functions of several variables, partial derivatives, multiple integration OR

CSE 259: Logic in Computer Science - This course is a mathematically solid introduction to propositional logic, first order logic, logic programming, and their applications in computer science.

Lab Science: PHY 121/122 & PHY 131/132 or CHM 113 & 116 or GLG 101/103 & GLG 102/104 or BIO 181 & 182

HU/SB: Humanities, Fine Arts & Design or Social & Behavioral Sciences

Term 4

CSE 240: Introduction to Programming Languages - Introduces the procedural (C/C++), applicative (LISP/Scheme), and declarative (Prolog) languages.


Lab Science: complete sequence from above

HU/SB: Humanities, Fine Arts & Design or Social & Behavioral Sciences

Term 5
CSE 301: Computing Ethics - Ethics for computing majors: history of computing, intellectual property, privacy, ethical frameworks, professional ethical responsibilities, and risks of computer-based systems.

CSE 310: Data Structures and Algorithms - Advanced data structures and algorithms, including stacks, queues, trees (B, B+, AVL), and graphs. Searching for graphs, hashing, external sorting.

CSE 360: Introduction to Software Engineering - Software life cycle models; project management, team development environments and methodologies; software architectures; quality assurance and standards; legal, ethical issues.


HU/SB: Humanities, Fine Arts & Design or Social & Behavioral Sciences

Term 6
CSE 430: Principles of Programming Languages - Formal syntactic and semantic descriptions, compilation and implementation issues, and theoretical foundations for several programming paradigms.

CSE 435: Introduction to Theoretical Computer Science - Introduces formal language theory and automata, Turing machines, decidability/undecidability, recursive function theory, and complexity theory.

CSE 445: Probability and Statistics with Engineering Problem Solving - Operating system structure and services, processor scheduling, concurrent processes, synchronization techniques, memory management, virtual memory, input/output, storage management, and file systems.

CSE 446: Software Integration Engineering - Software development using architecture design, composition, workflow, services, data resources, data representations, data management, and development tools.

CSE 450: Object-Oriented Programming & Data Structures - Formal syntactic and semantic descriptions, compilation and implementation issues, and theoretical foundations for several programming paradigms.

CSE 455: Introduction to Theoretical Computer Science - Introduces formal language theory and automata, Turing machines, decidability/undecidability, recursive function theory, and complexity theory.

CSE 460: Operating Systems - Operating system structure and services, processor scheduling, concurrent processes, synchronization techniques, memory management, virtual memory, input/output, storage management, and file systems.

CSE 485: Computer Science Capstone Project I - Second course in capstone sequence for computer science majors continuing the development process, technical skills, teamwork, and communication.

CSE 486: Computer Science Capstone Project II - Second course in capstone sequence for computer science majors emphasizing development process, technical skills, teamwork, and communication.

CSE 496: Software Integration Engineering - Software development using architecture design, composition, workflow, services, data resources, data representations, data management, and development tools.